Chevron Left
Back to Machine Learning with Python

Learner Reviews & Feedback for Machine Learning with Python by IBM

4.7
stars
17,408 ratings

About the Course

Python is a core skill in machine learning, and this course equips you with the tools to apply it effectively. You’ll learn key ML concepts, build models with scikit-learn, and gain hands-on experience using Jupyter Notebooks. Start with regression techniques like linear, multiple linear, polynomial, and logistic regression. Then move into supervised models such as decision trees, K-Nearest Neighbors, and support vector machines. You’ll also explore unsupervised learning, including clustering methods and dimensionality reduction with PCA, t-SNE, and UMAP. Through real-world labs, you’ll practice model evaluation, cross-validation, regularization, and pipeline optimization. A final project on rainfall prediction and a course-wide exam will help you apply and reinforce your skills. Enroll now to start building machine learning models with confidence using Python....

Top reviews

FO

Oct 8, 2020

I'm extremely excited with what I have learnt so far. As a newbie in Machine Learning, the exposure gained will serve as the much needed foundation to delve into its application to real life problems.

RC

Feb 6, 2019

The course was highly informative and very well presented. It was very easier to follow. Many complicated concepts were clearly explained. It improved my confidence with respect to programming skills.

Filter by:

2826 - 2850 of 3,057 Reviews for Machine Learning with Python

By Omid Z

Apr 23, 2020

The course has some valuable pieces of information to whom have not any background about Python and machine learning. Highly recommended for beginners, not professionals!!!

By Varun V

Feb 13, 2019

This course is definitely not for starters. People should have good knowledge before enrolling in this course and then this can be taken as an excellent refreshing course.

By Chinelo o

Mar 13, 2020

The Labs and assignment had poor instructions that were not easy to interpret. Some of the videos need to be reviewed as they do not match up with the transcribed texts.

By Nicholas S

Mar 25, 2021

A lot of theory, not a lot of examples. The final project had lots of typos, pre-written code needs updates, questions need some clarification. Theory was fun though.

By Sean S

Aug 29, 2020

I feel like the course started in the correct direction but then moved very quickly over some complex issues (i.e the programming behind building the ML models)

By Jimmy P

May 22, 2025

El curso aborda muy bien el aprendizaje automático Supervisado pero no dice nada del no supervisión, además faltaron temas como XGBoost muy usado ahora.

By Rana F

Sep 15, 2020

The explanation for each algorithm was good. However, the labs and the last assignment does not really explain what to do and it is all over the place.

By Jonathan M

Mar 27, 2019

Loved the assignments out here. They are awesome. Anybody who knows a little python and dataframe manipulation should be comfortable with this course.

By Mauricio F O M

Feb 26, 2020

It could be more didatic, with more simple (and ready) codes, and also a step by step code block composition to explain better each part of it.

By Meet S

Sep 17, 2020

No Practical Videos on applying Algorithms. Just explaining algorithms. Kindly add practical videos as well. Else, the course is fantastic 👍👍

By Christie P

Aug 5, 2021

A good course! I think it would have benefitted from more explanation of the code in the videos, rather than just jumping into it in the labs.

By wasim m

May 9, 2020

The course is pretty descent but it doesn't teach you how to use python it just give documentation and you have to read it and learn from it

By Muhammad Z A

Dec 23, 2019

It is a very brief course, not recommended for computer science students. If you're from a non-cs background it will be fine for a start.

By Rajshekhar D

Feb 21, 2021

The course gives idea about the things to know choose a prediction algorithm, only thing is - the coding part can be stressed upon more.

By Mohit M

Jun 30, 2020

It covers only the basics of machine learning not all topics are covered in this course. You will need to learn many things on your own.

By Vibha S

Aug 28, 2020

It would have been helpful to have an explanation of t each of the lines in the code, especially the ones that created the graphs.

By Louis C C I

Mar 25, 2021

I learned a lot but wish the coding was explained better. The final project could have been better if it had more instructions.

By Rohith P R

Apr 24, 2020

Need more clarity while explaining the algorithms. Also need video lectures on the code used in the lab and how the code flows.

By Amal J (

Jul 16, 2020

Peer review was problamatic , IBM Watson was tough to grasp could have been more informative .

But the course was really good

By Shankari S

Aug 30, 2020

This course covers the basic of major algorithms. It could be useful if they add more examples and more metrics calculation.

By AINUR A

Mar 25, 2021

Why am I not eligible to upgrade to a New version of a specification if it exists and I already paid for the next months??

By Manuel D

Oct 3, 2023

Basic Mahcine Learning course. It goes through the very basics of several models, but lacks practice and true excercises

By Pratik P

May 1, 2023

Was not able to get a clear understanding of the applications of Statistical concept applied in different ML algorithms.

By Zulqarnain B A

Jan 17, 2025

The course is good but a lot of content is just thrown at you without explaining anything the labs need to be improved

By Bob D

Jan 25, 2022

Some useful material, but again plagued by bad spelling, punctuation and technical issues. Nowhere near good enough.