The AI for Cybersecurity course offers a comprehensive introduction to the usage of AI methods, most specifically machine learning in the field of cybersecurity. It begins with an introduction to AI, covering its definitions, historical development, and general applications. The course then discusses the importance of AI in cybersecurity, introducing key concepts, and the distinction between the host security and the network security.

Discover new skills with $120 off courses from industry experts. Save now.


Recommended experience
Skills you'll gain
- Natural Language Processing
- Anomaly Detection
- Data Ethics
- Artificial Intelligence
- Cybersecurity
- Information Systems Security
- Deep Learning
- Algorithms
- Machine Learning
- Malware Protection
- Cyber Threat Intelligence
- Intrusion Detection and Prevention
- Cyber Attacks
- Supervised Learning
- Threat Detection
- Artificial Neural Networks
Details to know

Add to your LinkedIn profile
September 2025
21 assignments
See how employees at top companies are mastering in-demand skills

There are 4 modules in this course
Welcome to the introductory part of the AI and Cybersecurity course! During the 5 video lectures and 2 readings of this module you will find various definitions of the Artificial Intelligence, the evolution of this domain and the classification of the AI algorithms in search-based algorithms and intelligent systems. The domains where AI is successfully used are presented, with focus on the use of AI in cybersecurity related tasks (e.g.: network analysis, intrusion detection, malicious web link detection, anomaly detection or malware classification ). Afterwards, the basic concepts of cybersecurity will be introduced, and the classification of security threats at endpoint level or internet level. You will discover types of cybersecurity threats and how they can be defended.
What's included
12 videos7 readings7 assignments1 discussion prompt
Welcome to the second module of the AI for Cybersecurity course. This module consists of five lessons that explore different AI techniques and their applications in cybersecurity. It begins with an introduction to Machine Learning (ML) and its three basic types. The second lesson discusses three key cybersecurity tasks and explains how ML can be applied to address them. In the third lesson, you will follow a practical example of implementing and evaluating a malware detection system using two ML models: Decision Trees and Random Forests. The fourth lesson introduces fundamental concepts of deep learning (DL) and its applications in cybersecurity. Finally, the module concludes with an overview of Natural Language Processing (NLP) and how it can be used for cybersecurity-related tasks.
What's included
31 videos2 readings10 assignments
This module explores how AI techniques are applied to detect and mitigate online threats. It begins with an overview of malicious web links, explaining how they redirect users, run harmful code, and spread misinformation like fake news and phishing content. Detection methods are categorized into dynamic (e.g., sandboxing, honeypots) and static (e.g., URL analysis, blacklists, machine learning models). The module also details how URLs can be analyzed through lexical, host-based, and social media features. A special focus is given to Domain Generation Algorithms (DGAs), which malware uses to create deceptive domain names. Detecting DGAs is challenging and involves either manual feature extraction or automated learning methods. Another topic of this module is detecting fake news using deep learning modules. Finally, the presentation briefly talks about clickbait detection. Real-world case studies and research-backed solutions are presented throughout. By the end, learners are equipped to recognize key cyber threats and understand the AI models used to counter them.
What's included
5 videos1 reading2 assignments
This final module explores the ethical challenges and legal frameworks surrounding the use of AI in cybersecurity. Key concepts such as safety vs. security, risk management, and the balance between privacy and protection will be discussed. We will introduce the AI4People framework - autonomy, non-maleficence, beneficence, justice, and explainability - and examine its application to real-world cyber threats. The module also covers key regulations such as the EU AI Act, NIS2, the Cyber Resilience Act, and DORA, along with ethical guidelines from ACM, IEEE, and ISSA. Finally, we'll look at future trends, including open-source collaboration, ethical hacking, and global cooperation in securing AI systems. By the end, learners will understand the ethical and regulatory landscape and be prepared for the evolving challenges of AI in cybersecurity.
What's included
3 videos2 readings2 assignments
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.
Offered by
Why people choose Coursera for their career





Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
More questions
Financial aid available,