University of Colorado Boulder
Deep Learning for Computer Vision
University of Colorado Boulder

Deep Learning for Computer Vision

Tom Yeh

Instructor: Tom Yeh

Included with Coursera Plus

Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

1 week to complete
at 10 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

1 week to complete
at 10 hours a week
Flexible schedule
Learn at your own pace

What you'll learn

  • Improve model performance and training stability using multilayer perceptrons (MLPs) and applying normalization techniques.

  • Implement autoencoders for unsupervised feature learning and design Generative Adversarial Networks (GANs) to generate synthetic images.

  • Train convolutional neural networks (CNNs) for image classification tasks, understanding how layers extract spatial features from visual data.

  • Apply advanced architectures like ResNet for deep image recognition and U-Net for image segmentation.

Details to know

Shareable certificate

Add to your LinkedIn profile

Recently updated!

August 2025

Assessments

21 assignments

Taught in English

See how employees at top companies are mastering in-demand skills

 logos of Petrobras, TATA, Danone, Capgemini, P&G and L'Oreal

There are 4 modules in this course

Welcome to Deep Learning for Computer Vision, the second course in the Computer Vision specialization. In this first module, you'll be introduced to the principles behind neural networks and their use in visual recognition tasks. You'll begin by learning the basic building blocks—neurons, weights, biases—and progress toward constructing simple multi-layer perceptrons. Then, you'll discover key activation concepts like batch processing and graph-matrix conversions. Finally, you will visualize neural networks with an emphasis on classification tasks.

What's included

19 videos6 readings6 assignments

In this module, you’ll explore two powerful architectures in deep learning: autoencoders and generative adversarial networks (GANs). You’ll begin by learning how autoencoders compress and reconstruct data using encoder-decoder structures, and how reconstruction loss is minimized through backpropagation and gradient descent. You’ll then examine the role of loss functions and optimization techniques in training these models. In the second half of the module, you’ll dive into GANs, where a generator and discriminator compete to produce realistic synthetic data. You’ll study how adversarial training works, how binary cross-entropy loss is applied, and how GANs are used to model complex data distributions. By the end of this module, you’ll be able to implement and evaluate both autoencoders and GANs for representation learning and data generation.

What's included

13 videos2 readings5 assignments

In this module, you’ll learn how convolutional neural networks extract features from images and perform classification. You’ll begin by building a tiny CNN by hand and in Excel, exploring convolution, max-pooling, and fully connected layers. Then, you’ll scale up to larger CNN architectures and examine how they process data through multiple convolution and pooling stages. You’ll also study how categorical cross-entropy loss and gradients are computed for training. Finally, you’ll walk through backpropagation across all CNN layers to understand how learning occurs.

What's included

16 videos1 reading5 assignments

In this module, you’ll explore two influential deep learning architectures: ResNet and U-Net. You’ll begin by learning how ResNet uses skip connections and residual learning to enable the training of very deep networks, addressing challenges like vanishing and exploding gradients. You’ll examine how residual blocks preserve information and support higher-order logic across layers. Then, you’ll shift to U-Net, a powerful architecture for image segmentation, and study its encoder-decoder structure, skip connections, and upsampling techniques like transposed convolution. By the end of this module, you’ll understand how both architectures enhance learning efficiency and performance in complex vision tasks.

What's included

17 videos2 readings5 assignments

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.

Instructor

Tom Yeh
University of Colorado Boulder
2 Courses9,834 learners

Offered by

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."
Coursera Plus

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy

Frequently asked questions