Welcome to Advanced Machine Learning Techniques, where you'll dive deep into sophisticated approaches that power modern AI applications. We'll explore five key areas of advanced ML: ensemble methods for combining models, dimensionality reduction techniques for handling complex data, natural language processing for text analysis, reinforcement learning for decision-making systems, and automated machine learning for optimization. You'll work hands-on with industry-standard tools including Scikit-learn, XGBoost, NLTK, PyTorch, and MLflow, learning how to implement and optimize advanced algorithms in real-world scenarios.

This Labor Day, enjoy $120 off Coursera Plus. Unlock access to 10,000+ programs. Save today.


Advanced Machine Learning Techniques
This course is part of Machine Learning with Scikit-learn, PyTorch & Hugging Face Professional Certificate

Instructor: Professionals from the Industry
Included with
Recommended experience
Skills you'll gain
Details to know

Add to your LinkedIn profile
August 2025
22 assignments
See how employees at top companies are mastering in-demand skills

Build your Data Analysis expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate from Coursera

There are 5 modules in this course
In this module, you will establish ensemble learning techniques including bagging, boosting, and stacking. You'll learn how to combine multiple models to improve predictive performance and implement them using popular libraries like Scikit-learn, XGBoost, and LightGBM. Through hands-on practice, you'll evaluate ensemble models using cross-validation and learn to optimize their hyperparameters.
What's included
16 videos8 readings5 assignments4 ungraded labs4 plugins
This module will help you master dimensionality reduction techniques to handle high-dimensional data effectively. You'll learn to apply Principal Component Analysis (PCA) to reduce dimensionality while retaining key features, use t-distributed Stochastic Neighbor Embedding (t-SNE) to visualize high-dimensional data in 2D/3D space for clustering and pattern recognition, and implement Uniform Manifold Approximation and Projection (UMAP) for efficient dimensionality reduction, leveraging its speed and structure-preserving properties.
What's included
8 videos7 readings4 assignments3 ungraded labs1 plugin
In this module, you'll focus on natural language processing techniques from basic text preprocessing to advanced sentiment analysis. You'll learn how to preprocess text data using tokenization, stopword removal, and stemming/lemmatization with Natural Language Toolkit (NLTK) and spaCy. Through implementation of text classification using various techniques like Bag-of-Words, TF-IDF, and word embeddings, you'll gain practical experience in NLP tasks. You'll also train sentiment analysis models using Hugging Face Transformers and Scikit-learn.
What's included
13 videos6 readings5 assignments4 ungraded labs2 plugins
Reinforcement Learning Description: In this module, you'll explore the fundamentals of reinforcement learning (RL), including Markov Decision Processes (MDPs) and reward-based learning. You'll understand the key components of RL systems and implement both policy-based and value-based learning techniques. Through practical examples and hands-on implementation, you'll discover how RL is applied in real-world scenarios like robotics, gaming, and finance.
What's included
7 videos5 readings4 assignments3 ungraded labs1 plugin
This module focuses on automated machine learning techniques and model optimization. You'll learn to automate model selection and hyperparameter tuning using Auto-sklearn and GridSearchCV, and optimize models using MLflow for experiment tracking and reproducibility. You'll also explore Bayesian optimization techniques to improve model accuracy. The module concludes with a comprehensive capstone project that combines multiple techniques from throughout the course.
What's included
10 videos6 readings4 assignments1 programming assignment3 ungraded labs1 plugin
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.
Instructor

Offered by
Explore more from Data Analysis
Coursera
Coursera
Coursera
Why people choose Coursera for their career





Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
More questions
Financial aid available,